kruskal
原理
见《进阶指南》第364
页。
模板题
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 5010, M = 200010;
struct edge {
int u, v, w;
bool operator < (const edge& o) const {
return w < o.w;
}
};
int n, m;
edge e[M];
int f[N];
int find (int x) {
if (f[x] == x) return x;
return f[x] = find(f[x]);
}
void merge (int x, int y) {
f[find(x)] = find(y);
}
bool query (int x, int y) {
return find(x) == find(y);
}
int kruskal () {
for (int i = 1; i <= n; ++ i) f[i] = i;
sort(e + 1, e + m + 1);
int res = 0, cnt = 0;
for (int i = 1; i <= m; ++ i) {
int u = e[i].u, v = e[i].v, w = e[i].w;
if (query(u, v) == false) {
merge(u, v);
res += w;
++ cnt;
}
}
return (cnt < n - 1 ? -1 : res);
}
int main () {
scanf("%d%d", &n, &m);
for (int i = 1; i <= m; ++ i)
scanf("%d%d%d", &e[i].u, &e[i].v, &e[i].w);
int res = kruskal();
if (res == -1) {
printf("orz");
} else {
printf("%d", res);
}
return 0;
}