饼干
分析
见《进阶指南》第273
页。
实现
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 32, M = 5010;
struct node {
int val, idx;
bool operator < (const node& o) const {
return val > o.val;
}
};
int n, m;
node g[N];
int sum[N];
int f[N][M];
int res[M];
int main () {
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; ++ i) {
scanf("%d", &g[i].val);
g[i].idx = i;
}
sort(g + 1, g + n + 1);
for (int i = 1; i <= n; ++ i) sum[i] = sum[i - 1] + g[i].val;
memset(f, 0x3f, sizeof(f));
f[0][0] = 0;
for (int i = 1; i <= n; ++ i) {
for (int j = i; j <= m; ++ j) {
f[i][j] = f[i][j - i];
for (int k = 1; k <= i; ++ k)
f[i][j] = min(f[i][j], f[i - k][j - k] + (sum[i] - sum[i - k]) * (i - k));
}
}
printf("%d\n", f[n][m]);
int i = n, j = m, h = 0;
while (i >= 1) {
if (f[i][j] == f[i][j - i]) {
j -= i;
++ h;
} else {
for (int k = 1; k <= i; ++ k) {
if (f[i][j] == f[i - k][j - k] + (sum[i] - sum[i - k]) * (i - k)) {
for (int u = i - k + 1; u <= i; ++ u)
res[g[u].idx] = h + 1;
i -= k;
j -= k;
break;
}
}
}
}
for (int i = 1; i <= n; ++ i)
printf("%d ", res[i]);
return 0;
}