信息传递
分析
见《进阶指南》第362
页。
有向图的最小环问题。
实现
#include <iostream>
#include <cstring>
#include <queue>
#define inf 0x3f3f3f3f
using namespace std;
const int N = 200010;
struct edge {
int to, next, w;
};
edge e[N];
int idx, head[N];
struct node {
int idx, dis;
bool operator < (const node& o) const {
return dis > o.dis;
}
};
int n;
int dis[N];
bool mark[N];
void add_edge (int u, int v, int w) {
e[idx].w = w;
e[idx].to = v;
e[idx].next = head[u];
head[u] = idx ++;
}
int dijkstra (int s) {
memset(mark, 0, sizeof(mark));
memset(dis, 0x3f, sizeof(dis));
priority_queue<node> pq;
dis[s] = 0;
pq.push({ s, dis[s] });
while (!pq.empty()) {
int cur = pq.top().idx;
pq.pop();
if (cur == s && mark[cur] == true) return dis[cur];
if (mark[cur] == true) continue;
mark[cur] = true;
for (int i = head[cur]; i != -1; i = e[i].next) {
int to = e[i].to, w = e[i].w;
if (dis[cur] + w < dis[to]) {
dis[to] = dis[cur] + w;
pq.push({ to, dis[to] });
}
}
if (cur == s) dis[cur] = inf;
}
return inf;
}
int main () {
memset(head, -1, sizeof(head));
scanf("%d", &n);
for (int i = 1, to; i <= n; ++ i) {
scanf("%d", &to);
add_edge(i, to, 1);
}
int res = inf;
for (int s = 1; s <= n; ++ s)
res = min(res, dijkstra(s));
printf("%d", res);
return 0;
}