多边形
分析
见《进阶指南》第284
页。
实现
#include <iostream>
#define inf 0x3f3f3f3f
using namespace std;
const int N = 2 * 52;
int n;
char a[N];
int b[N];
int f[N][N][2]; // 0:最小值,1:最大值
int main () {
cin >> n;
for (int i = 1; i <= n; ++ i) {
cin >> a[i] >> b[i];
a[n + i] = a[i];
b[n + i] = b[i];
}
for (int i = 1; i <= 2 * n; ++ i) f[i][i][0] = f[i][i][1] = b[i];
for (int len = 2; len <= n; ++ len) {
for (int l = 1; l + len - 1 <= 2 * n; ++ l) {
int r = l + len - 1;
f[l][r][0] = inf, f[l][r][1] = -inf;
for (int k = l; k <= r - 1; ++ k) {
char opt = a[k + 1];
int li = f[l][k][0], la = f[l][k][1],
ri = f[k + 1][r][0], ra = f[k + 1][r][1];
if (opt == 't') {
f[l][r][0] = min(f[l][r][0], li + ri);
f[l][r][1] = max(f[l][r][1], la + ra);
} else {
int x1 = li * ri, x2 = li * ra, x3 = la * ri, x4 = la * ra;
f[l][r][0] = min(f[l][r][0], min(min(x1, x2), min(x3, x4)));
f[l][r][1] = max(f[l][r][1], max(max(x1, x2), max(x3, x4)));
}
}
}
}
int res = -inf;
for (int i = 1; i <= n; ++ i)
res = max(res, f[i][i + n - 1][1]);
cout << res << endl;
for (int i = 1; i <= n; ++ i)
if (res == f[i][i + n - 1][1])
cout << i << ' ';
return 0;
}