通信线路(解法一)
分析
见《进阶指南》第355
页。
实现
#include <iostream>
#include <cstring>
#include <queue>
#define inf 0x3f3f3f3f
using namespace std;
const int N = 1010, M = 20010;
struct edge {
int to, next, w;
};
edge e[M];
int idx, head[N];
struct node {
int idx, layer, dis;
bool operator < (const node& o) const {
return dis > o.dis;
}
};
int n, m, k;
int dis[N][N];
bool mark[N][N];
void add_edge (int u, int v, int w) {
e[idx].w = w;
e[idx].to = v;
e[idx].next = head[u];
head[u] = idx ++;
}
void dijkstra () {
memset(dis, 0x3f, sizeof(dis));
priority_queue<node> pq;
dis[1][0] = 0;
pq.push({ 1, 0, dis[1][0] });
while (!pq.empty()) {
int cur = pq.top().idx, layer = pq.top().layer;
pq.pop();
if (mark[cur][layer] == true) continue;
mark[cur][layer] = true;
for (int i = head[cur]; i != -1; i = e[i].next) {
int to = e[i].to, w = e[i].w;
if (max(dis[cur][layer], w) < dis[to][layer]) {
dis[to][layer] = max(dis[cur][layer], w);
pq.push({ to, layer, dis[to][layer] });
}
if (layer < k && dis[cur][layer] < dis[to][layer + 1]) {
dis[to][layer + 1] = dis[cur][layer];
pq.push({ to, layer + 1, dis[to][layer + 1] });
}
}
}
}
int main () {
memset(head, -1, sizeof(head));
cin >> n >> m >> k;
for (int i = 1, u, v, w; i <= m; ++ i) {
cin >> u >> v >> w;
add_edge(u, v, w);
add_edge(v, u, w);
}
dijkstra();
int res = inf;
for (int i = 0; i <= k; ++ i)
res = min(res, dis[n][i]);
cout << (res == inf ? -1 : res) << endl;
return 0;
}